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ABSTRACT
We propose to use the small, newly available on-NIC memory
(“nicmem”) to keep pace with the rapidly increasing performance
of NICs. We motivate our proposal by accelerating two types of
workload classes: NFV and key-value stores. As NFV workloads
frequently operate on headers—rather than data—of incoming pack-
ets, we introduce a new packet-processing architecture that splits
between the two, keeping the data on nicmem when possible and
thus reducing PCIe traffic, memory bandwidth, and CPU process-
ing time. Our approach consequently shortens NFV latency by up
to 23% and increases its throughput by up to 19%. Similarly, be-
cause key-value stores commonly exhibit skewed distributions, we
introduce a new network stack mechanism that lets applications
keep frequently accessed items on nicmem. Our design shortens
memcached latency by up to 43% and increases its throughput by
up to 80%.

CCS CONCEPTS
• Networks→ Network adapters.

KEYWORDS
NIC, operating system, hardware/software co-design
ACM Reference Format:
Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022. The
Benefits of General-Purpose On-NIC Memory. In Proceedings of the 27th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), February 28 – March 4,
2022, Lausanne, Switzerland. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3503222.3507711

1 INTRODUCTION
Network speeds grow quickly, with 100 [12, 53, 81] and 200 [13,
54, 82] Gigabit Ethernet (GbE) network interface controllers (NICs)
already widely available, 400 GbE arriving in 2021 [10, 94], and
800GbE expected in a few years [22]. The increased network volume
introduces bottlenecks across all the relevant components within a
host system: CPU [34, 44, 45, 50, 68, 88, 118], memory [41, 78, 80, 112,
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113]; and the PCIe interconnect [67, 92, 109]. We broadly classify
the approaches to addressing this challenge into two categories.

The first category offloads all packet processing activity onto
the NIC. It includes full application workloads such as key-value
stores [26, 33, 63, 70, 111], and various network functions [15, 71,
103, 118]. This approach eliminates much of the overheads. But
migrating the networking stack away from the host system has
serious drawbacks, hindering the ease and flexibility of general
purpose programming, encumbering innovation in the network
stack, and imposing undesirable security and maintenance over-
heads [89, 102].

The second category retains the network stack on the host.
It attempts to, e.g., reduce the cost of system software abstrac-
tions with specialized network stacks that bypass the kernel, avoid
copies, and leverage direct hardware access [4, 56, 107], and it
includes latency hiding techniques [61], cross-layer program opti-
mizations [34, 64, 99], and algorithmic client-server co-design [73].
The contribution of this paper is compatible with this category, fo-
cusing on reducing the overheads associated with data movement
between the NIC and the CPU.1

More specifically, our goal is to propose an effective, previously
unnoticed type of high-throughput networking optimization, which
is different than the approaches discussed above. Our new optimiza-
tion rests on three observations. Firstly, there exists a canonical
class of applications that are tasked with moving messages around,
from some source to some destination, by exclusively operating on
the metadata of messages. In contrast, the associated data is not
used by such applications except for the purpose of moving it, as is.
We denote this type of applications as data movers (§3).

A notable example of data movers is found in network function
virtualization (NFV) workloads such as network address translation
(NAT) [96] and load balancing (LB) [32]. In accordance with our
above definition of data movers, such network functions are charac-
terized by the property that (1) they make decision based on packet
headers and may additionally modify these headers, but (2) they
neither modify nor use packet payloads save for delivering them
to their destinations. Key-value stores such as Memcached [38]
and Redis [66] constitute another notable example of a data mover
family of applications. In this type of workloads, the key and value
are the metadata and data, respectively.

The second observation that underlies our proposed optimization
is that all major networking vendors, including Broadcom, Intel,

1We expect our proposal to benefit system-on-chip SmartNICs as well, because high
network speeds stress CPU, memory, and interconnect [11, 93] even more than server
systems [74].
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and NVIDIA, increasingly equip their NICs with a small, fast, inter-
nal memory [9, 12, 49, 53, 81, 82, 84, 94]. For example, the newest
NVIDIA NIC (ConnectX6-Dx) is equipped with 4 MiB SRAM. Ordi-
narily, this memory is designated to be used by various offloading,
acceleration, and transport functionalities that the NIC supports
and that its users may employ.

The third observation that motivates our work is that this on-
NIC memory is typically underutilized. The default setting of, e.g.,
the aforementioned NIC uses less than 15% of the internal memory,
and NVIDIA usage data indicates that clients seldom configure their
NICs to use significantly more. Moreover, NVIDIA NIC designers
acknowledge that it would be reasonably easy to increase the size
of the NIC’s internal SRAM (and/or add bigger/slower/cheaper
DRAM) provided a compelling use case that needs the additional
memory.

In light of the above observations, rather than keeping the on-
NIC memory internal, we suggest to expose its unused part to
software, to be utilized for general purposes, as regular memory,
through memory-mapped I/O (MMIO). We denote this exposed
part as “nicmem,” and we propose to leverage it for optimizing data
mover applications.

We assign the name “nmNFV” (short for “nicmem NFV”) to
our system that optimizes for NFV data movers with the help of
nicmem. In implementing it, we rely on the ability of existing NICs
to split each incoming packet into two different buffers that store
the packet’s header and payload [14, 29, 94]. When arming the
receive (Rx) ring with memory buffers that absorb the incoming
traffic, the NIC’s packet-splitting ability allows nmNFV software to
use nicmem for storing payload buffers, simply by populating the
relevant Rx ring fields with nicmem pointers. In parallel, nmNFV
software uses pointers to regular host memory for header buffers.
Consequently, when a packet arrives, its header is placed in host
memory, but its payload remains on the NIC, thus reducing PCIe
traffic, host memory traffic, and hence latency. For data mover
network functions (NFs), the header provides all the information
required, so the NF does not mind that the payload is remote. When
the NF finishes operating on the header, it transmits the packet
using the same payload (nicmem) pointer it received, thus further
reducing PCIe and host memory traffic and latency.

Splitting the header and payload of packets between nicmem
and host memory (“hostmem”) allows us to incorporate a second
optimization in nmNFV. Let 𝑝 denote an incoming (or outgoing)
packet, and letℎ denote its header. In the baseline system, 𝑝 is stored
in its entirety somewhere in hostmem, and this memory location is
pointed to by some Rx (or Tx) ring entry. But in nmNFV, only ℎ is
stored in hostmem, so instead of pointing to ℎ’s location, nmNFV
canwriteℎ’s content to the associated ring entry, leveraging the fact
that packet headers are relatively small. We call this optimization
“header inlining.”We find that it is effective because it improves data
locality and reduces the number of CPU cycles and PCIe roundtrips
required to process 𝑝 .

In dealingwith key-value stores (KVS), we use the name “nmKVS”
(short for “nicmem KVS”) to describe our system that optimizes
KVSworkloads with the help of nicmem. The nmKVS infrastructure
accelerates KVS data mover applications by letting them store pop-
ular values in nicmem. When incoming requests target such values,
the data mover induces smaller PCIe and hostmem traffic overheads
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Figure 1: Preview of experimental results.

similarly to nmNFV, which likewise results in lower latency and
higher throughput. KVS workloads are commonly skewed, exhibit-
ing Zipf distributions [3, 6, 116]. Because nicmem is smaller than
hostmem, such workloads are most suitable for nmKVS.

We describe our design of nmNFV and nmKVS (§4), and we
explain howwe implement a realistic prototype of the two using the
NVIDIA ConnectX-5 NIC and its nicmem (§5). We experimentally
evaluate our prototype using micro- and macro-benchmarks (§6).
Figure 1 provides a preview of some of these results, using: two
request-response (“RR”) implementations [58, 106] that ping-pong
a small message between them; the MICA [73] key-value store
accelerated with nmKVS and serving a single (“s”) or multiple (“m”)
clients; and the aforementioned NAT and LB network functions
accelerated with nmNFV. As can be seen, our approach improves
latency and throughput by up to 43% and 80%, respectively.

2 BACKGROUND
NICs commonly use two types of rings in each direction to store
descriptors and completions. Descriptors point to software pro-
vided packet buffers, while completions mark descriptors processed
by NIC hardware. We next describe how these rings are used to
receive/transmit packets.

Receive flow (Rx). To receive packets, software pre-populates
descriptors that point to buffers large enough to fit the maximum
sized packet. Each time a packet arrives, the NIC hardware DMA
reads a descriptor from the Rx ring, DMA writes the packet to
the descriptor’s payload buffer, and finally DMA writes a comple-
tion entry and possibly fires an interrupt. Then software uses the
completion to find the corresponding descriptor, and replaces the
payload buffer in the descriptor.

Transmit flow (Tx). Each time software sends a packet, the NIC
driver writes a descriptor that points to the packet’s payload, and
rings the doorbell. Then, the NIC hardware DMA reads the descrip-
tor to find the payload buffer. Next, it DMA reads the payload buffer,
and finally it DMA writes a completion to allow software to release
the payload buffer.
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3 MOTIVATION
As noted, our goal is to demonstrate the benefit of nicmem for
“data movers,” network applications that move unchanged data to
its destination exclusively based on the associated metadata. To
this end, we focus on two types of data mover workloads: network
function virtualization (NFV) applications and key-value stores
(KVS). In this section, after we discuss these workloads in more
detail (§3.1), we exemplify the latency cost that they pay due to su-
perfluously moving data from NIC to host memory and back (§3.2).
We then enumerate system bottlenecks triggered by this superflu-
ous activity (§3.3) and highlight why direct data I/O (DDIO) caching
technology cannot eliminate this problem (§3.4). Finally, we present
the technological trends behind on-NIC memory (§3.5).

3.1 Workloads
NFV. A lot of effort has been put into studying NFV [2, 15, 27,

31, 32, 59, 71, 118]. In this class of applications (called “network
functions” or NFs), flexible software and off-the-shelf hardware re-
place rigid proprietary network equipment. Common NFs include
firewalls, virtual private networks (VPN), deep packet inspectors
(DPI), routers and forwarders, network address translators (NAT),
load balancers (LB), flow monitors, and rate limiters. Aside from
VPN and DPI, all the above NFs are data movers, operating on meta-
data only (packet headers and per-flow state) before delivering the
packets to their next destination. NAT and LB are two particularly
important data movers: a study of data center NFs showed that up
to ≈60% of total traffic goes through one or both [100]. As end-to-
end encryption prevails, NF access to packet payload is diminished,
making data movers more important [46, 91].

KVS. Key-value stores like Memcached [38] and Redis [66] un-
derlie key cloud and data center infrastructures and drive much of
their network traffic [51, 104]. Significant research effort has thus
been dedicated to improving them, both in software [73, 77, 78]
and in hardware [48, 70, 74]. “Get” KVS operations are data movers:
clients send keys (metadata) and servers return the matching values
(data). KVS access patterns are commonly highly skewed [3, 6, 116],
so improving the performance of a small set of hot key-value pairs
can improve overall performance significantly.

Importantly, in this work, we use the term KVS more broadly
than typical, also associating it with such applications as web
servers (like Apache [37]) when serving static files.

3.2 Latency Cost
In high-throughput workloads, when traffic approaches line rate,
we show that superfluous data movement between NIC and host
memory causes systems to bottleneck (§3.3). But superfluous move-
ment is also disadvantageous in underloaded, non-bottlenecked
conditions, because it increases latency.

To illustrate, Figure 2 (left) shows the latency breakdown of Data
Plane Development Kit (DPDK) ping-pong [58], which sends 64B
and 1500B (MTU) packets over the ICMP protocol back and forth
between two machines. The first bar (“host”) corresponds to the
baseline system, which delivers entire packets to host memory,
whereas the second bar (“nic”) corresponds to storing payloads in
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Figure 2: Superfluous datamovement betweenNIC and host
memory degrades performance even in underloaded condi-
tions.

nicmem. The third and fourth bars respectively add the header in-
lining (“inl”) optimization, storing headers in NIC rings as outlined
in §1. For 1500B packets, nicmem shortens latency by 8% and 15%
without and with inlining. For 64B packets, latency is shortened by
19% due to inlining only (nicmem does not play a part as the entire
packet is inlined).

Observe that 64B latency is improved by our optimizations (19%)
more than 1500B (15%), which is counterintuitive, as 64B benefits
from only inlining, whereas 1500 also benefits from nicmem. We
hypothesize that this happens because packet-splitting occurs only
for 1500B, requiring software to process two ring entries when
sending and receiving. We corroborate our hypothesis by repeat-
ing the ping-pong experiment using RDMA unreliable datagram
(UD) [106], as RDMA rids software from having to handle headers.
Figure 2 (right) shows that in this case the benefit for 1500B is
indeed greater.

3.3 Bottlenecks
When high-throughput applications stress the network subsystem,
the superfluous data movement we identify can bottleneck the three
main components that are involved in accommodating this traffic:
NIC, PCIe interconnect, and host memory. To exemplify, we run
the DPDK Layer-3 forwarding benchmark (called l3fwd [57]) under
three gradually intensifying setups configured to forward 1500B
packets. The l3fwd server machine is connected back-to-back to a
single client load generator machine running the Cisco T-Rex load
generator [21]. Full details of our evaluation setup appear in §6.1.

NIC. The first experiment utilizes a single core driving a single
100 Gbps NIC. The average results are shown in Figure 3 (top),
which depicts: (i) throughput; (ii) roundtrip latency; (iii) idle CPU
cycles (“idleness”); (iv) PCIe bus traffic flowing from NIC to host-
mem as observed by the NIC, expressed as percentage out of the
maximal PCIe bandwidth available to the NIC, which is 125 Gbps
(“PCIe out”); (v) PCIe traffic in the opposite direction (“PCIe in”);
(vi) number of occupied Tx ring entries, as measured by the CPU
whenever it enqueues packets, expressed as percentage of the ring
size, which is 1024 (“Tx fullness”); and (vii) host DRAM bandwidth
as measure by Intel pcm [55] (“mem bw”). We measure NIC PCIe
utilization with NVIDIA NEO-Host [83].
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Figure 3: Bottlenecks triggered by superfluous traffic between NIC and host memory when running DPDK l3fwd.

Examining Figure 3 (top), we see that the baseline system is
unable to achieve line rate (Fig. i), and that is suffers from high
latency (Fig. ii) due to two bottlenecks: PCIe (Fig. iv) and Tx fullness
(Fig. vi). We focus on the latter as it is unique to one core/ring
processing and has been observed by others attempting to achieve
one core/ring 100 Gbps [34, 35, 62]. We also remark that single ring
bottlenecks are not unique to NICs as we also observe similar issues
in NVMe SSDs.

When l3fwd tries to transmit packets that it just processed only
to find that the Tx ring full, it drops the packets, which is why it is
unable to achieve line rate. We know that the NIC is fast enough
to sustain 100 Gbps line rate, so the question is: why is the NIC
failing to consume Tx ring entries fast enough and thus causing
the Tx ring to reach 100% fullness? NVIDIA performance engineers
helped find the answer.

The NIC’s transmit engine gathers packets from Tx ring 𝑟 over
PCIe to stream them via the outgoing wire. PCIe is speedier (has
higher throughput) than the wire, so 𝑟 ’s packets accumulate in an
internal NIC buffer 𝑏, until unavoidably 𝑏 gets full. The NIC then
reacts by de-scheduling transmission from 𝑟 for a timeout duration
of 𝑡 , which, for reasons outside our scope, is set to be proportional
to how long it takes to read another byte from 𝑟 (≈PCIe roundtrip).
The NIC assumes that other Tx rings will keep it busy during this
timeout. But no such rings exist in our setup, and 𝑡 is longer than
𝑏’s drain time, so the NIC is left with no work, even though packets
are awaiting in 𝑟 . From the CPU perspective, the NIC appears
to temporarily stop transmitting, causing 𝑟 to fill up as observed.
Nicmem does not suffer from this problem because for it 𝑏 contains
only headers, so the NIC has a lot more packets to send during 𝑡 .

PCIe. The results of our second experiment are shown in the
middle of Figure 3. Here, we use two cores (and hence two rings)
instead of one. As expected, this eliminates the NIC bottleneck,

allowing the baseline to achieve 100 Gbps. The bottleneck that
remains is PCIe outbound, which is 99.8% saturated. NIC PCIe out
operations are thus stalled and increase latency considerably (Fig.
ii), and packets get discarded. We verified that PCIe out is indeed
the bottleneck to blame by curbing the client to deliver 90 Gbps,
which reduced server PCIe out bandwidth somewhat and resolved
the problem.

Nicmem does not exhibit the problem, consuming much less
PCIe traffic because packet payloads do not traverse it.

We remark that PCIe out exceeds PCIe in because transmitted
packets and associated Tx ring entries are easier to batch than in-
coming packets and associated completions. Each PCIe transaction
incurs some overhead in the form of PCIe headers. With batching,
one PCIe transaction handles multiple descriptors, thus batching
reduces PCIe link utilization.

Host Memory. Our third experiment resulted in the bottom row
of Figure 3. Here, we use eight cores to handle double the through-
put, utilizing two 100 Gbps NICs instead of one in both the client
and the server. Additionally, to approximate a memory intensive
NF, we configure l3fwd to perform 250 random memory reads per
packet from a 8 MiB buffer. Although the baseline system offers
an incoming load of 200 Gbps, the server is able to accommodate
only ≈170 Gbps from it (Fig. i) with high latency (Fig. ii). This per-
formance drop is caused by running out of DRAM bandwidth (Fig.
vii), as the NIC reads and writes payload data that compete with
the NF’s memory activity, which prolongs its per-packet process-
ing time. (Later, in Figure 7, we show that less than 10 per-packet
memory reads are enough to bottleneck DRAM.) Nicmem does not
suffer from these problems.
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3.4 DDIO Limitations
The bottleneck resource of applications that exhibit poor memory
locality is DRAM [20, 98]. As shown above, I/O-intensive applica-
tions might suffer from the same problem, because they involve
high-throughput direct memory access (DMA) activity performed
by I/O devices—an activity that contends for the same DRAM band-
width resource [78, 109]. This issue also affects data movers like
network functions, which consequently suffer from lower through-
put, longer latency, and higher variability [30, 36, 40, 76, 113, 117].
The problem occurs even in “balanced” systems whereby, on paper,
DRAM capacity exceeds I/O bandwidth. The reason is that, as mem-
ory utilization increases, access latency likewise increases: linearly
at first, and then exponentially when nearing capacity [113].

Direct data I/O (DDIO) technology [24] can avoid or alleviate
the problem, as it serves DMA reads from the last level cache (LLC)
if the data is there, and it allows DMA writes to allocate up to two
LLC ways by default, thereby bypassing DRAM. The effectiveness
of DDIO, however, is inherently limited by LLC capacity dedicated
to DMA writes [92, 97, 113]. Notably, at a fast enough rate, DDIO
writes might evict still-unprocessed packets to DRAM (a.k.a. the
“leaky DMA problem”), implying that for DDIO to be effective, the
combined size of the buffers pointed by Rx rings should not exceed
the LLC size dedicated to DDIO allocations [113].

Ideally, a handful of DDIO allocated cache lines would be enough
to fit all receive buffers. However, multi-core packet processing
requires a receive ring per core, and each ring entry must be large
enough to store the maximum packet size (1500B). For example,
an 1024-sized ring stores up to 2MiB of payload buffers which is
as large as an entire LLC way on our system. To avoid exceeding
DDIO capacity, one may consider to decrease ring sizes [113].

Unfortunately, one cannot arbitrarily reduce the size of rings to
accommodate DDIOwithout negative implications. To illustrate, we
employ the RFC2544 no drop rate (NDR) test [7] using single-core
l3fwdwith varying ring sizes, which finds themaximum throughput
attainable without loss [117]. Figure 4 shows the result for 64B and
1500B packet sizes, which suggests a 1024-entries lower bound for
100 Gbps NICs (faster NICs may require more). Indeed, 1024 is the
default ring size in all standard applications that come with the
DPDK library as of 2018 [65]. Likewise, all major NIC drivers use
1024-sized rings or more [8, 79, 114]. We too use this size unless
stated otherwise.

To accommodate high I/O rates, in addition to increasing ring
sizes, researchers proposed to increase the number of LLC ways
available for DDIO DMAwrites [35, 117]. In both cases, the problem
is that I/O and CPU potentially contend for the same LLC resource.
Using Nicmem alleviates this problem.

3.5 On-NIC Memory Today
Our proposal hinges on several technological trends: (1) On-NIC
memory already exists to support various NIC functionalities, it just
is not available for software use; (2) the NIC’s demand for on-NIC
memory is limited; and (3) on-NIC memory size can be increased
to support data mover usage.

Many commercial ASIC NICs contain on-NIC SRAM [9, 12, 49,
53, 81, 82, 84, 94] to support various optional NIC offloading, accel-
eration, and transport functionalities. For instance, on-NIC memory
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is used to cache packet steering rules [43, 62]. Due to its current
target use case, on-NIC memory is relatively small. For example,
the latest NIC model of NVIDIA (ConnectX-6Dx) is equipped with
4MiB of on-NIC SRAM memory. But this size is dictated by the
current use cases, not by technological constraints. NVIDIA archi-
tects acknowledge that it is feasible and cost-effective to increase
on-memory NIC size to several MiBs—roughly, the equivalent of a
CPU LLC size—given a compelling use case.

Moreover, even the limited on-NIC memory is not fully utilized
today, because applications and OSs typically do not enable the
advanced NIC functionalities that use this memory. For instance,
NVIDIA usage data indicates less than 15% of on-NIC memory is
typically used.

When adding SRAM we increase NIC die size, each bit cell spans
0.3 µm2 of silicon [18] which translates to 0.21 $ per MB at esti-
mated 7 nm process wafer prices [25, 28]. For 16$ (2% of the price
of the cheapest 100GbE NIC, 795$) [17], we can obtain 80MBs
which exceeds the LLC of the most powerful Intel 3rd gen scalable
processor [52], and can sustain 37 NIC queues with 1024 entries
each. Furthermore, we speculate that SRAM die size and price will
decrease as 3D stacking technology unlocks hundreds of MBs of
SRAM [101].

Because it is cost-effective and it simplifies our implementation,
we assume nicmem is as large as CPU LLC. In our design, we show
that it is possible to overcome this limitation (§4.1). In our evalua-
tion, we show that even small amounts of nicmem are useful (§6.4).

4 DESIGN
We propose to improve the latency and throughput of data mover
applications by equipping ASIC NICs with nicmem, which is on-
NIC memory (SRAM and/or DRAM) that the NIC exposes for use
by data movers to hold their data, and thereby improve latency,
save host memory bandwidth, and reduce DDIO/LLC contention.

We describe the required NIC hardware changes in §4.1. We then
demonstrate nicmem’s utility by designing nicmem-based systems
for accelerating NFV and KVS applications (§4.2).

4.1 Nicmem Hardware
At a high-level, the nicmem design consists of providing large on-
NIC SRAM, which is partitioned into two regions. Most of the
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SRAM is called nicmem and is exposed to software, allowing data
mover applications to use it for data storage and thereby accelerate
data transfer. The rest of the SRAM is not exposed to software and
is used by NIC hardware to support various functionalities, as is
the case today.

NIC hardware supports identifying packet descriptors (either Rx
or Tx) whose payload is located in nicmem. When writing (Rx) or
reading (Tx) such a descriptor’s payload, the NIC directly accesses
its SRAM instead of going through the PCIe interconnect. This
mechanism allows data movers to reap nicmem benefits via pure
software techniques, by allocating their payloads on the nicmem
and thus avoiding hostmem and PCIe traffic for data transfers (as
we demonstrate in §4.2).

Using nicmem for Rx traffic poses a challenge, however: because
nicmem is limited, it may not suffice to hold large packet buffer
pools, which are required to support bursty and/or high-throughput
traffic. To address this, we design a split Rx queue mechanism, in
which the NIC can use a secondary Rx queue, located in hostmem,
to absorb Rx traffic when nicmem resources are exhausted.

In the following, we describe the design in more detail.

Exposing nicmem. NIC firmware carves out a portion of the on-
board SRAM and isolates it from the internal NIC functionalities.
This step takes place after the NIC driver has initialized and config-
ured all desired NIC functionality, to ensure that all SRAM resources
needed for NIC operation are available. The firmware then exposes
the nicmem as a memory mapped I/O range on the NIC. The OS
identifies this range as a nicmem through the NIC capabilities and
makes it available to applications through the mmap system call
interface. Applications can then map nicmem regions into their
address space and subsequently access it through CPU load/store
instructions that get routed to the nicmem over PCIe. Since the OS
intermediates nicmemmapping, it can restrict different applications
to disjoint nicmem ranges. Applications can also register mapped
nicmem address regions with the NIC and then use it through NIC
queue descriptors. Similarly to the CPU, because NIC hardware
interposes between queues and registered nicmem, it can control
the access to disjoint nicmem ranges.

Identifying nicmem. The benefit of nicmem is that the NIC can
access it without going out to the PCIe interconnect. To reap this
benefit, the NIC must identify when packet descriptors (created by
software) have their payload located in a nicmem address. This
is achieved by software setting a flag in the descriptor, which tells
the NIC that the address corresponds to a nicmem address.

Receiving traffic into nicmem. Typical NIC receive flow (§2)makes
it challenging to use nicmem for Rx traffic. Since nicmem size is
limited, at high networking rates it might not suffice to hold a burst
of incoming traffic. As a result, an Rx ring containing only nicmem
buffers may become empty during such a burst, leading to packet
drops.

To address this problem, we propose to employ a split rings
mechanism, which is inspired by network page faults [69]. In this
design, NIC receive rings are split in two: primary and secondary
receive rings. When a packets arrives, the NIC tries to consume a
buffer from the primary ring, which holds nicmem buffers. If the
primary ring is empty, the NIC proceeds to consume a buffer from

is primary 
empty?Packet

arrives

Yes

No
NIC memory

host memory
Store in
primary

Store in
secondary

Figure 5: The split rings approach.

the secondary queue (Figure 5). Completion entries are stored in a
single queue, as before, but with the entries indicating the order and
location of received packets, i.e., primary or secondary ring. Packet
buffers are subsequently returned by software to their original ring.

The split rings approach guarantees that as long as the working
set of incoming packets is smaller than the nicmem size, then all
received packets are served by nicmem from the primary ring. The
split rings design introduces only negligible latency to the NIC’s
receive pipeline, since checking ring occupancy is based on ring
producer and consumer indexes that are stored on nicmem. It does,
however, double the number of queues in the system, but we believe
that this overhead is acceptable because per-queue state is very
small.

Beyond SRAM. Nothing in the above design is SRAM-specific.
Indeed, nicmem can be extended with DRAM to provide value
for applications with memory demands beyond those that can be
satisfied by SRAM. On-NIC DRAM is faster for the NIC to access
compared to host DRAM, as it can be accessed without a CPU
interconnect trip.

4.2 Leveraging Nicmem in Data Movers
To improve performance using nicmem, software must navigate the
trade-off that nicmem is fast for the NIC to access but slow for the
CPU to access, as CPU accesses are routed over the PCIe intercon-
nect to the NIC. We thus observe that data mover applications can
significantly benefit from nicmem. A data mover can use nicmem
to hold its data and rely on hostmem only for the metadata. This
approach saves the CPU cycles and memory bandwidth that would
otherwise be required to transfer the data to/from the network
from/to hostmem.

In the following, we describe designs that use the above idea to
accelerate NFV (§4.2.1) and KVS (§4.2.2) applications. Our designs
assume that the application can safely manipulate NIC Rx/Tx rings
directly and does not require OS intervention to send/receive traffic.
This is the case, for example, in applications using DPDK which
offers a packet processing programming model that is based on
kernel bypass and direct hardware access for efficiency.

4.2.1 NFV Acceleration (NmNFV). Our design for accelerating NFV
data movers with nicmem is named nmNFV. NmNFV mitigates
memory bandwidth, DDIO and LLC contention caused by copying
of packet payloads into hostmem for NF operations, as shown in
Figure 6(a). Without nicmem, each incoming packet is (1) DMAed
to hostmem by the NIC, (2) operated on by the NF; and finally
(3) transmitted, which requires the NIC to read the header and
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payload from hostmemwith DMA again. Crucially, however, packet
payloads are completely ignored by most NFs. The waste of copying
payloads into hostmem is compounded by the fact that payloads
are typically an order of magnitude larger than headers: network
traffic characteristics studies show that packet sizes in data centers,
universities, and on the Internet follow a bimodal clustering pattern
around small ≈ 200B and large ≈ 1400B packets [5, 16, 42, 60, 108].

The basic idea of nmNFV is thus to simply keep packet payloads
on the nicmem. To realize this idea, we use several techniques.

First, we rely on the pre-existing capability of the NIC to write an
incoming packet’s header and payload into different buffers [14, 29,
94]. NmNFV uses this packet-splitting functionality to configure
the Rx ring with Rx descriptors that instruct the NIC to write
headers into hostmem and payloads into nicmem (Figure 6(b)).
Consequently, when a packet arrives, its payload remains on the
NIC. Only the header is written to hostmem, which suffices for the
NF to perform its operation. Finally, on transmit, the NIC already
has the packet’s payload in nicmem.

The trade-off in splitting packet headers and payload is that it
introduce some overhead to packet processing. The NIC’s Rx/Tx
rings require twice the number of scatter-gather elements to hold
the same number of packets. Not only does it increase the ring’s size,
but it increases the number of scatter-gather operations the NIC
must perform per packet. Moreover, these two pointers must prop-
agate from the application level, which means that book-keeping
structures increase in size and more CPU work is required to con-
struct them.

To address this overhead and to further optimize the NF flow, we
propose to store a packet’s header in its descriptor instead of in an
independent hostmem buffer (Figure 6(c)). We call this optimization
header inlining. It leverages pre-existing NIC inlining functionality
by which descriptor flags can instruct the NIC to read/write a small
range of packet data from/to the descriptor. Header inlining reduces
the number of scatter-gather entries required to represent a packet
back to one (for the payload). More importantly, it enables the
NIC to fetch only the descriptor when sending/receiving data. This
optimization thus reduces both the amount of data fetched from
hostmem as well as the number of PCIe roundtrips required to do
so, because in the non-optimized case the NIC must first read the
descriptor in order to obtain the header’s address in hostmem.

Header inlining does require an NF to copy the packet’s header
from its Rx to its Tx descriptor, but the related CPU overhead is
low, because the headers are hot in the cache following the NF’s
processing of the header.

4.2.2 KVS Acceleration (NmKVS). In theory, a KVS could leverage
nicmem by serving its item set from nicmem. The KVS would store
the values (data) associated with the keys (metadata) in nicmem
and each read request would be answered with a response whose
payload is in the relevant item’s nicmem. This approach is not
viable in general, however, because the size of KVS item sets are as
large as host DRAM [1, 110], which dwarfs the size of the multi-MiB
nicmem.

We address this problem by leveraging the property that KVS
workloads are commonly skewed, exhibiting a Zipf distribution [3,
6, 116]. We therefore propose nmKVS, which is a KVS design that
stores a subset of hot items on nicmem and serves them from it.
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Figure 6: Host memory based packet transmission com-
pared to data on nicmem with and without header inlining.

Our design focuses on the mechanism of serving hot items out of
nicmem and not on identifying hot items in the first place. That is,
we assume that a KVS can efficiently identify the hottest items—
e.g., using a heavy hitters algorithm [19, 23, 87]—and move them
to nicmem, while evicting “colder” items back to hostmem.

NmKVS relies on header-data splitting (§4.2.1) to perform zero-
copy sends of values residing on nicmem. The basic idea is straight-
forward, but it creates a concurrency challenge. Suppose that a
response containing an item is posted to the NIC’s Tx queue, but
has not been transmitted yet. In the meantime, the KVS receives
an update operation of that value and the CPU starts overwriting
the old value. Because the value is updated in place, if the NIC now
begins transmission of the queued response packet, it might read
(and transmit) an inconsistent mix of the old and new values, since
it reads the value concurrently to the CPU updating it.

We handle this race by avoiding in-place data overwrites for “hot”
items served directly (zero-copy) from nicmem. Instead, we main-
tain two buffers for each such item. One buffer, called the stable
buffer, resides in nicmem and holds data that may be transmitted
by the NIC. This buffer is guaranteed to not be overwritten concur-
rently to a NIC access. The second buffer, called the pending buffer,
holds new data written by an update operation. After an update
overwrites the pending buffer, it invalidates the stable buffer by
clearing a “valid” bit in its structure. The stable buffer gets updated
later, lazily, by some get operation.

To safely update the stable buffer, its structure contains a refer-
ence count indicating the number of outstanding Tx descriptors
referencing it. The KVS services a get operation for a “hot” item as
follows. If the stable buffer is valid, the KVS increments its reference
count and uses the stable buffer as the response packet’s payload
(zero-copy). (The reference count is decremented when processing
the NIC’s completion event of this packet’s transmission.) If the
pending buffer is invalid, the KVS checks whether its reference
count is zero. If so, the KVS overwrites the stable buffer with the
contents of the pending buffer, and transmits a zero-copy response,
as before. Otherwise, the KVS transmits a response whose payload
is a copy of the pending buffer.

5 IMPLEMENTATION
We elaborate on nicmem system software and hardware, and de-
scribe our implementation of nmNFV and nmKVS in the DPDK
framework, targeting NVIDIA ConnectX NICs.
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Kernel API. Hardware exposes nicmem to the kernel which man-
ages its allocation to processes using Linux RDMA verbs APIs.
Processes obtain nicmem by: (1) requesting the kernel for an alloca-
tion of the desired length; and (2) calling mmap to map it to virtual
memory using write-combined memory pages. Using virtual mem-
ory nicmem can be shared or isolated between different processes
in the system.

DPDK API. To expose nicmem to DPDK applications, we intro-
duce a new API for DPDK NICs (Listing 1). Applications allocate
NICmemory usingalloc_nicmem and free it usingdealloc_nicmem.
Applications manage this memory using standard DPDK memory
allocator APIs such as packet memory buffer pools.

NVIDIA NICs use an on-NIC IOMMU to translate all memory
accesses and isolate between applications. To use memory with
the NIC it must be registered with the kernel to create a memory
key (mkey) that is associated with the application. Then, to send
or receive data via application NIC queues, the mkey is provided
alongside memory addresses. Nicmem references use an mkey too.
Therefore, nicmem is isolated from other application using the NIC.

WhenDPDK posts receive or transmit descriptors on NIC queues,
the driver looks up the mkey corresponding to packet buffer mem-
ory. Host-memory usually requires only one mkey while nicmem
requires another. To optimize these lookups the drivers caches the
most recently used mkeys in order; this optimization is weakened
when splitting packets when two mkeys are used per-packet.

NmNFV. We implement nmNFV in the DPDK l3fwd [57] applica-
tion and in themodular FastClick [4, 90] NF composition framework.
Our implementation closely follows the nmNFV design. After allo-
cating and mapping nicmem, the NF creates a packet buffer pool on
top of nicmem. Next, it configures receive rings to split packets at
a 64B offset into header and data buffers residing in hostmem and
nicmem buffer pools, respectively, and to inline the headers. Split
packets consist of two DPDK mbuf structures chained together:
one that holds the header and another that points to the data which
is either in hostmem or in nicmem.

Importantly, all changes related to nicmem are in DPDK’s control-
path, which means that application data-path operations are un-
modified. As a result, we expect applications which follow DPDK
APIs to adopt our approach easily and with no risky modifications
to performance critical code. However, we find that some DPDK ap-
plications ignore DPDK’s APIs and make assumptions about packet
buffer structure. In particular, we observed that FastClick accesses
packet buffers directly and assumes that there is only one buffer
per mbuf. Therefore, we modify its data-path elements to support
our split packets.

NmKVS. We implement nmKVS on top of MICA [73], a highly
optimized DPDK-based KVS that is built to achieve the highest
performance on CPUs [72]. However, MICA get operations do
copy item data twice: once from the KVS table to the stack and
again from the stack to the response packet. We speculate that the
reason behind this implementation is that copy semantics greatly
simplify the design and implementation of the system and/or that
it was forced by missing DPDK features, such as a callback upon
completion of a packet transmission. Our implementation extends
DPDK to support these features.

void *alloc_nicmem(device, len);
void dealloc_nicmem(addr);

Listing 1: routines to control NIC memory

Our nmKVS implementation modifies MICA to serve a set of hot
items directly from nicmem with the zero-copy design described
in §4.2.2. We allocate stable buffers for hot items according to avail-
able nicmem and use memcpy to overwrite values on nicmem as
needed. We additionally introduce a DPDK callback on transmit
completion to decrement the stable buffer’s reference count. Such
a callback was not available in DPDK before, and so we modify
DPDK and NVIDIA drivers to support it.

Hardware limitations. Available hardware imposes some limita-
tion on our implementation. First, our NIC firmware exposes only
256 KiB of its available SRAM. Second, our NIC requires hardware
modifications to support the split rings approach. To overcome
these and support real applications, we emulate a large nicmem by
reusing the provided memory buffer for storing the data of multi-
ple packets, which thus override each other. This methodological
technique works as data mover applications and benchmarks do
not inspect their payloads. We verified that this methodology does
not affect performance by observing no measurable difference in
DPDK l3fwd performance with and without reusing nicmem on the
available hardware. Third, our NIC also supports only transmit-side
inlining, and therefore we still suffer the cost of splitting on receive.
Finally, our NIC does not split packets according to hardware pars-
ing which restricts us to use suboptimal hard-coded header split
offsets. We expect that future devices will remove this limitation.

Implementation effort. To support NIC memory we change 404
lines of code (LoC) in DPDK 20.08 NVIDIA’s driver; and 329 LoC
in PCIe and Ethernet device infrastructure code. For nmNFV, we
modify 194 LoC in FastClick’s DPDK binding, and another 25 LoC
to support split packets in IP, TCP, and UDP element code. NmKVS
support in MICA relies on transmit completion callbacks (64 LoC),
zero-copy support (282 LoC), and nicmem support (125 LoC).

6 EVALUATION
Weusemicrobenchmarks andmacrobenchmarks to evaluate nicmem
performance for KVS and NFV workloads. After introducing our
methodology (§6.1), we evaluate NF performance with a syntactic
microbenchmark (§6.2) and then real NF applications: network ad-
dress translation (NAT) and load-balancer (LB). Based on these, we
quantify the number of cores required to saturate 200 Gbps and
measure the impact of various packet and NIC receive ring sizes
and DDIO way allocations (§6.3). We then measure the impact of
split-ring spilling to hostmem by varying the nicmem available
in NAT and LB NFs (§6.4). We next measure the cost of accessing
nicmem from the CPU (§6.5) and quantify KVS performance using
nicmem (§6.6).

6.1 Methodology
Our setup consists of a pair of Dell PowerEdge R640 servers, one
of which is the system under test and the other is the load gener-
ator. Both have 16-core 2.1 GHz Xeon Silver 4216 CPUs, 128GiB
(=4x16GiB) 2933 MHz DDR4 memory, 22MiB LLC split across 11
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ways. They run Ubuntu 18.04 (Linux 5.6.0) with hyperthreading
and Turbo Boost off.

Themachines are connected back-to-back via two 100GbENVIDIA
ConnectX-5 NICs [81]. All the results presented are trimmed means
of ten runs; the minimum and maximum are discarded. The stan-
dard deviation is always below 5%.

NF Benchmarking. On the load generator machine, we run the
stateless Cisco T-Rex packet generator [21], which we modify to
improve latency measurement accuracy from 10-100𝜇s to 1𝜇s (simi-
larly to Primorac [105]). Unless stated otherwise, we send packets
at 200Gbps using our two NICs.

For macrobenchmarking, on the server, we run FastClick [4]
based NAT and LB using FastClick’s DPDK mbuf pool to avoid
unnecessary packet metadata copies. Unless stated otherwise: we
disable pause frames; use 1024 Rx and Tx ring descriptors (default);
two DDIO LLC ways (default); and 14 cores (as our experience with
NAT and LB shows that 14 cores are needed to process 200 Gbps; see
Figure 8). To maximize CPU efficiency and reach line rate speeds,
we spread load equally among all cores using a different flow per
packet. We use large 1500B UDP packets unless stated otherwise, as
this is a common use case (§4.2.1), and because it helps us sustain
200 Gbps processing on our setup, which generates the highest load
on PCIe, DDIO, and memory bandwidth.

We evaluate the followingNF processing configurations: (1) “host”
employs the baseline DPDK host memory; (2) “split” demonstrates
the overhead introduced by splitting packet headers and data (be-
fore reducing host memory copies); (3) “nmNFV-” improves per-
formance by placing data on nicmem, thus removing data copies;
and (4) “nmNFV” further improves it by inlining headers inside Tx
descriptors.

As in §3.3, we measure NIC PCIe utilization using NVIDIA NEO-
Host [83] and CPU core and unncore counters using Intel pcm [55].

KVS Benchmarking. We evaluate the performance of nmKVS
using MICA [73] executing on 4 cores. MICA’s client is the load
generator, using 800K large key-value pairs (128B keys and 1024B
values), which we access uniformly at random. As noted, large
values ease CPU processing and are common in real workloads [1, 3].
We evaluate two server configurations: (C1) 256 KiB hot area cache
that corresponds to the size of nicmem available on our NICs, and
(C2) 64MiB hot area corresponding to a future device that we
emulate (§5).

6.2 NF Microbenchmarks
We use a synthetic NF to explore how memory subsystem con-
tention affects CPU efficiency and, in turn, the throughput and
latency of NFs with different attributes. To control NF memory
intensity we run layer-2 forwarding followed by the WorkPackage
FastClick element, which performs a number of random memory
reads from preallocated buffers. We perform 480 runs, covering the
space of the following parameters: Rx ring size: 256, 512, 1024, or
2048; accessed memory buffer size: 1, 2, 4, 8, 16, or 32; memory
reads per packet: 2, 4, 6, 8, or 10; and DDIO ways: 0, 2, 8, or 11. For
each NF processing configuration, we plot the missing throughput
(200Gbps - measured) and latency of all 480 runs in a scatter-plot
in Figure 7.
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Figure 7: Synthetic NF performance. The points are runs
with varying Rx ring size, NF memory intensity, and DDIO
ways. Percentages show the number of runs past the cutoff.

After considering various parameters that may influence perfor-
mance, we find that NF processing time per packet is most mean-
ingful. We then calculate the per-core budget and mark it as the
“cutoff” point. We use 14 cores with frequency 2.1 GHz, and packet
arrival rate of 16.26MPPS: (14× 2.1× 109)/(16.26× 106) gives us a
budget of 1808 cycles per packet before the cutoff point. We observe
that in the host configuration, which has to copy packet data to
memory, this point is passed for at least 46% of the NFs. Meanwhile,
nmNFV only passes its cutoff point for at most 16% of these same
NFs.

We mark runs with less than 30GB/s memory bandwidth with
“+” and the rest with “x”. We observe that both nmNFV variants
eliminate memory bandwidth contention (all are below 30GB/s),
while base and split suffer from the leaky DMA problem and high
memory bandwidth contention: at least 60% of runs have more
than 30GB/s memory bandwidth, and in fact at least 31% exceed
40GB/s. Consequently, both nmNFV variants have as much as 42%
more runs within the cutoff budget. Pleasingly, the majority of
both nmNFV variants results below the cutoff also have better
throughput and latency.

As expected, the results also show that nmNFV consumes more
cycles than nmNFV- and thus performs slightly worse when CPU
cycles are scarce. However, this is part of a trade-off: nmNFV has
better 99th percentile tail latency compared to nmNFV-, i.e., 58%
of nmNFV runs are lower than 128 µs compared to only 40% in
nmNFV- (not shown).
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Figure 8: To handle 200Gbps loads NAT and LB need (1) at least 12 cores and (2) to reduce memory and PCIe load.
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Figure 9: Small receive ring size can alleviate memory bandwidth bottlenecks, increasing throughput. But, these are suscepti-
ble to packet loss during bursts.

We observe that when cycles per packet are greater than the
budget, workloads with the same cycles per packet still show differ-
ent latencies. Furthermore these latencies can be grouped into four
clusters that correspond to the various Rx ring sizes (256, 512, 1024,
and 2048). The reason is that once an NF exceeds the budget it will
never process packets before more packets build up in its Rx ring.
Therefore, receive rings are always full and each packet will wait
until all preceding packets in the ring are processed, thus latency
increases with ring size.

6.3 NF Macrobenchmarks
Weuse two stateful NFs to evaluate the performance of both nmNFV
variants: LB and NAT using 200Gbps. These applications cache up
to 10M flows using a per core cuckoo hash table to avoid needless
cache contention. LB assigns each flow, using its 5-tuple, to one
of 32 destination servers, and stores this pairing to consistently
hash and forward subsequent packets of that 5-tuple to the same
server. If no match is found, LB uses round-robin to assign a new
destination server to the flow. Similarly, NAT identifies existing

flows using their 5-tuples and rewrites packet source IP and port
consistently. New flows are assigned one of the available source
ports.

Next, using 200Gbps and 1500 B packets, wemeasure the number
of cores required to meet this load, and the impact of various packet
and NIC Rx ring sizes and DDIO ways.

Cores. Figure 8 shows the results for LB and NAT scalability
from 2 to 14 cores. Host and split fall short of reaching line rate
throughput and as a result their latency increases with the number
of cores. The reason is DDIO thrashing of the LLC due to the leaky
DMA problem. The DDIO hit rate declines and memory bandwidth
increases as we increase the core count.

Both nmNFV variants, in contrast, achieve line-rate throughput
at 12 and 14 cores for LB and NAT, respectively. When approaching
line-rate, improvements manifest in reduced latency. As expected,
both variants improve PCIe hit rate, PCIe outbound utilization,
memory bandwidth, and CPU cache hit rate. We remark that split
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Figure 10: Our approach enables efficient 200Gbps processing for large packets. Small packet workloads are always CPU
bound.
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Figure 11: A system with DDIO disabled and nicmem enabled outperforms the same system with maximum DDIO and no
nicmem.

and nmNFV- use two scatter-gather entries compared to one for
nmNFV and host, and as result their performance is lower.

Real trace. We repeated the experiment above with the first mil-
lion packets from a 2019 real-world CAIDA packet trace form the
Equinix NYCmonitor [16]. The trace we used contains 43261 unique
source IPs and 58533 unique destination IPs with an average packet
size of 916 bytes (small and large packet clusters). Figure 12 presents
the results. Due to limitations in our load generator (T-Rex), we
cannot measure latency so we focus on throughput. Both nmNFV-
variants outperform base by up to 28%. The results are similar to
Figure 8 with lower throughput for all as small packets increase
the load on the CPU without benefiting from nicmem.

Rx Descriptors. To examine the performance impact of growing
Rx ring sizes, which are necessary to handle packet bursts (see §3.4),
we measure the performance with Rx ring sizes between 32 and
4096 (Figure 9). We observe that increasing ring size decreases
throughput by up to 15% and 20% for LB and NAT, respectively.
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Figure 12: Performance with real packet trace from CAIDA.

Latency grows exponentially as LB and NAT fail to meet the offered
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load at 256 and 128 Rx descriptors, respectively. This is preceded by
a sharp decline in PCIe hit rate, as the total Rx ring buffers exceed
available LLC space for DDIO: 256 × 14 × 1500 ≈ 5𝑀𝑖𝐵 > 4𝑀𝑖𝐵

available to DDIO. Interestingly, host and split NAT performance
diminishes before exceeding DDIO LLC capacity. We observe that
NAT’s higher LLC access rate and occupancy are responsible, as
NAT uses two cache entries per flow, i.e., one for each direction
and LB uses only one. Base and split application cache hit rate
plummets from 83% to 27% and memory bandwidth grows from
5GB/s to 55GB/s, in correlation with PCIe hit rate, which reaffirms
the importance of LLC locality and low memory bandwidth to NF
performance.

Packet Size. Figure 10 shows the performance with packet sizes
between 64B and 1500B. We observe that for both nmNFV variants
throughput and latency is similar or better than host and split for
all packet sizes. Both variants achieve better throughput for packets
larger than 1024 B. Both variants also improve memory bandwidth,
PCIe utilization, and PCIe hit rate for all packet sizes.

DDIO. Figure 11 shows performance with various DDIO cache
way allocations. To control DDIO cacheways, we use theDDIOTune
fastclick element developed by Farshin et al. [35]. The results show
that a systemwith DDIO disabled and nicmem enabled outperforms
the same system with maximum DDIO assigned LLC ways and no
nicmem in latency (22 µs vs. 84 µs) and throughput (197Gbps vs.
195Gbps).

As expected, adding DDIO ways improves the performance of
host and split; host achieves line-rate at 5 and 9 cache ways for
LB and NAT, respectively. We observe that even though host and
split reach line-rate, their latency remains as high as 64 µs, while
the latency of nmNFV- and nmNFV is 26 µs and 22 µs, respectively.
Nicmem improves latency due to its lower PCIe utilization, and
inlining improves latency further by avoiding an extra PCIe round-
trip to fetch the header.

Curiously, nmNFV- PCIe hit rate is constant at 80% for all DDIO
cache way settings. Meanwhile, nmNFV benefits from 100% PCIe
hit rate. This suggests that packet header buffers are evicted from
the cache before they are reused by DDIO; inlining avoids this
problem as it reduces the number of buffers in-use.

6.4 Insufficient NIC Memory Capacity
Nicmem capacity changes between devices and it may not suffice
to feed all per-CPU queues and even the split rings approach may
spill over data into hostmem queues. We therefore re-test NAT
performance when varying the available nicmem by controlling
the number of nicmem queues.

Figure 13 presents the results. We observe that a single nicmem
queue (out of 7 in total per NIC) drastically improves latency and
throughput as it eliminates the PCIe bottleneck discussed in §3.3.
Meanwhile, increasing nicmem queues further reduces memory
bandwidth, DDIO contention, and improves application LLC hit
rate (not shown).

6.5 Cost of Accessing NIC Memory
In this section, we compare the cost of CPU access to nicmem in
comparison to hostmem. Figure 14 compares the copy rate within
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Figure 14: Cost of copy between hostmem and nicmem.

hostmem with the copy rate from hostmem to nicmem, and vice
versa. Our experiment measures the throughput of 100 copy itera-
tions within hostmem to the same copy loop with source/destina-
tion in nicmem.

We observe that the results differ greatly between the two. On
the one hand, the rate of copy into nicmem decreases as the source
buffer grows in size, from 4.0x for buffers in L1 (32 KiB) to 1.0x for
non-cached data. On the other hand, the rate of copy from nicmem
to hostmem incurs between 528x and 50x overhead. This is because
nicmem is marked for write-combined caching, which permits the
caching of writes, but prevents the caching of reads.

6.6 Key-Value Store
We use two workloads to evaluate nmKVS using 4 cores: 100% get
requests (best case scenario), and various get/set ratios to show the
affect of costly nicmem sets.

100% Get Workload. Figure 15 shows nmKVS performance with
100% get load, varying the load directed at hot items. This is the
best-case scenario, as nicmem is never accessed directly by the CPU
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Figure 15: MICA 100% get throughput and latency. Labels
show improvement over hostmem.

when processing get requests (§4.2.2); response packet descriptors
only reference data in nicmem that the NIC fetches when sending
packets to the wire.

The results show that increasing the portion of requests directed
at the hot items increases the benefit of nicmem, and larger nicmem
provides greater benefits. We observe that (C2) outperforms (C1)
for two reasons: (1) the 256 KiB hot area causes an imbalanced load
distribution between the 4 server cores, underutilizing one core,
and (2) the 64MiB hot area exceeds the size of host LLC and there-
fore, in this case, hostmem does not benefit from caching. Overall,
nmKVS improves MICA throughput by up to 21% in (C1) and 79%
in (C2), improves latency by 14% in (C1) and 43% in (C2), and tail
latency by 21% in (C1) and 42% in (C2). We also measure unloaded
nmKVS latency using a modified closed-loop MICA client (not
shown). We observe analogous results, nmKVS improves latency
and throughput by up to 6% and 19% for (C1) and (C2), respectively.

We remark that nmKVS improves throughput more than nmNFV
while using nicmem only on transmit. The reason is that MICA
must copy data to avoid zero-copy races (§4.2.2), an overhead we
avoid in nmKVS. Meanwhile, in NFV systems, the baseline performs
no copies and therefore the gap is smaller.

Mixed Workload. Figure 16 shows the throughput of nmKVS
under various get/set request ratios. Recall that nmKVS sets are
more costly as they need to write data in both hostmem and nicmem
to avoid zero-copy races, therefore 100% sets is the worst case
scenario for nmKVS. To show this scenario, we direct all sets to the
hot area. We then consider two types of workloads, one in which
all gets are served from the hot area (best case), denoted “allhit”,
and another where all gets go to non-hot area (worst case), denoted
“nohit”. Then, we compare (C1) and (C2) as above.

We observe that the nmKVS is no more than 5% worse in both
(C1) and (C2) indicating that most set operations write into non-
cached memory, which we confirm by observing 70% cache misses
using 100% sets. In the best case, throughput improves by up to 23%
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Figure 16: MICA set+get throughput using 4 cores. Labels
show nmKVS relative to the corresponding baseline.

and 77% for (C1) and (C2), respectively. In (C1), serving gets from
hot hostmem area improves throughput by up to 31%, in contrast
to (C2) which performs the same regardless of whether gets are
served from the hot area. This is due to the larger than LLC hot
area in (C2).

7 NIC MEMORY AND NFV ACCELERATION
In this section we contrast our approach to the common use of
NIC memory today in the context of data-mover NFV applications
(i.e., NFV acceleration) to show the trade-off between the two ap-
proaches as a function of the number of flows.

Today, in NFV acceleration, NIC memory stores per-flow state,
such as packet steering rules used for NFV acceleration. In partic-
ular, products such as NVIDIA ASAP2 [85] will group packets to
flows, apply actions such as count, modify, encapsulate, and de-
capsulae packet headers, and then send packets out (i.e., hairpin); all
in ASIC without software involvement. This approach works best
when all per-flow states fit inside NIC memory, but performance
degrades as the number of flows grows. In contrast, nmNFV NIC
memory utilization is independent of the number of flows, and it
scales as well as baseline CPU based NFs while improving their
performance.

To compare the performance of ASAP2 per-flow acceleration
with nmNFV, we run an NF that counts the number of bytes and
packets for each flow, while varying the number of flows. We im-
plement this NF by modifying DPDK’s l3fwd, and run it on two
CPU cores. We also implement and run this NF in NIC ASIC by
using DPDK’s rte_flow match and action rules together with
two pairs of queues operated by NIC hardware in hairpin mode;
we call this accelNFV.

Figure 17 shows the resulting throughput, latency, CPU utiliza-
tion, and NIC cache misses. The figure shows that accelNFV is idle
even when processing 100Gbps, as NIC ASIC processes packets
without interfering with the CPU. We also observe that increasing
the number of flows beyond on-NIC memory capacity, increases
the time to process packets as the number of NIC context misses
requires fetching and also evicting contexts to hostmem. When
packets are processed too slowly, the Rx ring overflows causing sig-
nificant packet loss and increased latency. Increasing the number of
rings would not mitigate this problem, because it does not increase
NIC processing speed through parallelism. In fact, performance
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Figure 17: NFV scalability to large numbers of flows. The
labels show the difference between nmNFV and accelNFV.

will degrade farther as additional rings will also contend over NIC
memory.

8 RELATEDWORK
Packet inlining. Splitting metadata (headers) from data (payload)

is known to improve performance via better caching of CPU ac-
cessed metadata, and lower read amplification from prefetching and
DMAing. This idea has been applied to log structured merge trees
on SSDs [75], to sorting data [95], and with small request-response
packets [39]. The contribution of this paper is in combining these
techniques with nicmem to efficiently accelerate data-mover appli-
cations.

Header-data split. Previous work proposed storing NF packet
payload on network switchmemory [47]. Storing payload on nicmem
is preferable because the NIC: (1) has more memory per host; (2)
requires no coordination with switches on dropped packets; (3)
allows for CPU offloading (e.g., checksum), which is impossible
with switch parking; and (4) simplifies debugging as compared to
switches.

NIC memory in RDMA. NIC memory has been used exclusively
for RDMA so far [86]. In RDMA, it improves the latency of atomic
operations [115], and small message transfers as we demonstrated
in §3.2.

9 CONCLUSIONS
There is an important class of network applications that move data
of messages exclusively based on the associated metadata. For these,
the act of transferring the data from the NIC to host memory and
back is superfluous and hampers performance. On-NIC memory
is now prevalent and, if exported to software, can eliminate the
problem.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact provides source code for NVIDIA ConnectX-5 NIC
memory (nicmem) support in DPDK, which we then use in Fastclick
to implement nmNFV and in MICA to implement nmKVS. This
artifact also provides experiments that stress nmNFV and nmKVS.
nmNFV experiments use an network address translator and a load
balancer with 200GbE traffic generated by the T-Rex traffic genera-
tor. nmKVS uses MICA’s load generator. In principle, our design
stores packet payload on nicmem and passes packet headers to the
CPU for processing. This reduces DDIO, LLC, memory and PCIe
bandwidth.

A.2 Artifact check-list (meta-information)
• Run-time environment: DPDK, Fastclick.
• Hardware: ConnectX-5.
• Metrics: DDIO, LLC, Memory bandwidth, PCIe bandwidth.
• How much time is needed to prepare workflow?: 5min.
• Howmuch time is needed to complete experiments (approx-
imately)?: 1 run in 1.5–8hrs, 10 runs in 15–80hrs.

A.3 Description
A.3.1 Hardware dependencies. This artifact expects two Intel Sky-
lakemachines connected back-to-back using twoNVIDIAConnectX-
5 NICs.

A.3.2 Software dependencies. OS: Ubuntu 18.04, Linux kernel 5.4;
libraries: DPDK 20.08; applications: Fastclick and MICA; traffic
generator: T-Rex

A.4 Installation
Our artifact is available on github: https://github.com/BorisPis/ni
cmem-asplos22-artifact

(1) Clone the artifact to the same path on both machines.
(2) Only on the server, setup a kernel with hugepages. Fastclick

experiments use 1G hugepages and MICA experiments use
2M hugepages.

(3) On both client and server, import useful environment vari-
ables: source ./scripts/env.sh

(4) On the client machine, prepare all git modules:
./scripts/make-client.sh

(5) On the server machine, prepare all git modules:
./scripts/make-server.sh

https://github.com/BorisPis/nicmem-asplos22-artifact
https://github.com/BorisPis/nicmem-asplos22-artifact
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The last two steps clone and compile everything you need. Given
all was successful, then all is ready to run benchmarks. Benchmarks
are executed from the server machine which operates the load gen-
erator remotely via ssh. Make sure password-less ssh is configured
between the server and the client.

We remark that our scripts use hard-coded MAC and IP ad-
dresses. Different configurations will require updating our scripts
accordingly.

A.5 Experiment workflow
Enter the directory corresponding to the desired figure (e.g., fig7)
in the paper and follow instructions in the README. In all cases,
one file runs the experiment, and another file (plot.sh) analyses
results and produces the corresponding figure.

A.6 Evaluation and expected results
Running the experiments 10 times (REPEAT=10) should produce
Figures 7, 8, 9, 11, and 12 from the paper.
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